
SEED Labs – Return-to-libc Attack Lab 1

Return-to-libc Attack Lab

Copyright c© 2014 Wenliang Du, Syracuse University.
The development of this document is/was funded by the following grants from the US National Science
Foundation: No. 1303306 and 1318814. This lab was imported into the Labtainer framework by the Naval
Postgraduate School, Center for Cybersecurity and Cyber Operations under National Science Foundation
Award No. 1438893. Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation. A copy of the license can be found at http://www.gnu.org/licenses/fdl.html.

1 Lab Overview

The learning objective of this lab is for students to gain first-hand experience with a variant of the buffer-
overflow attack; this attack can bypass a protection scheme currently implemented in major Linux operating
systems. A common way to exploit a buffer-overflow vulnerability is to overflow the buffer with malicious
shellcode, and then cause the vulnerable program to jump to the shellcode that is stored in the stack. To
prevent these types of attacks, some operating systems provide an ability to make stacks non-executable;
therefore, jumping to the shellcode will cause the program to fail.

Unfortunately, the above protection scheme is not fool-proof; there exists a variant of buffer-overflow
attack called the return-to-libc attack, which does not need an executable stack; it does not even use
shell code. Instead, it causes the vulnerable program to jump to some existing code, such as the system()
function in the libc library, which is already loaded into the memory.

In this lab, students are given a program with a buffer-overflow vulnerability; their task is to develop a
return-to-libc attack to exploit the vulnerability and finally to gain the root privilege. In addition to
the attacks, students will be guided to walk through several protection schemes that have been implemented
in Ubuntu to counter against the buffer-overflow attacks. Students need to evaluate whether the schemes
work or not and explain why.

2 Lab Environment

This lab runs in the Labtainer framework, available at http://my.nps.edu/web/c3o/labtainers. That site in-
cludes links to a pre-built virtual machine that has Labtainers installed, however Labtainers can be run on
any Linux host that supports Docker containers.

From your labtainer-student directory start the lab using:

labtainer retlibc

Links to this lab manual and to an empty lab report will be displayed. If you create your lab report on a
separate system, be sure to copy it back to the specified location on your Linux system.

3 Lab Tasks

You are required to exploit the ”retlib” program. You are provided the source code to the program, but you
are not to alter the program source code.

SEED Labs – Return-to-libc Attack Lab 2

3.1 Initial Setup

Address Space Randomization. Ubuntu and several other Linux-based systems uses address space ran-
domization to randomize the starting address of heap and stack. This makes guessing the exact addresses
difficult; guessing addresses is one of the critical steps of buffer-overflow attacks. In this lab, we disable this
feature using the following command:

sudo sysctl -w kernel.randomize_va_space=0

The StackGuard Protection Scheme. The GCC compiler implements a security mechanism called ”Stack
Guard” to prevent buffer overflows. In the presence of this protection, buffer overflows will fail. You can
disable this protection if you compile the program using the -fno-stack-protector switch. For example, to
compile a program example.c with Stack Guard disabled, you may use the following command:

$ gcc -m32 -fno-stack-protector example.c

The retlib program was compiled without StackGuard.

Non-Executable Stack. Ubuntu used to allow executable stacks, but this has now changed: the binary
images of programs (and shared libraries) must declare whether they require executable stacks or not, i.e.,
they need to mark a field in the program header. The kernel or dynamic linker uses this marking to decide
whether to make the stack of this running program executable or non-executable. This marking is done
automatically by the recent versions of gcc, and by default, the stack is set to be non-executable. To change
that, use the following option when compiling programs:

For executable stack:
$ gcc -m32 -z execstack -o test test.c

For non-executable stack:
$ gcc -m32 -z noexecstack -o test test.c

Because the objective of this lab is to show that the non-executable stack protection does not work, the
retlib program was compiled with the "-z noexecstack" option.

Note for Instructors: For this lab, a lab session is desirable, especially if students are not familiar with
the tools and the enviornments. If an instructor plans to hold a lab session (by himself/herself or by a TA),
it is suggested the following to be covered in the lab session 1:

1. The use of Labtainers.

2. Basic use of gdb debug commands and stack stucture.

Review the retlib.c program. It has a buffer overflow vulnerability. It first reads an input of size 80 bytes
from a file called “badfile” into a buffer that is smaller than 80 bytes, causing the overflow. The function
fread() does not check boundaries, so a buffer overflow will occur. Since this program is a set-root-uid
program, if a normal user can exploit this buffer overflow vulnerability, the normal user might be able to
get a root shell. It should be noted that the program gets its input from a file called “badfile”. This file is
under the users’ control. Our objective is to create the contents for “badfile”, such that when the vulnerable
program copies the contents into its buffer, a root shell can be spawned.

1We assume that the instructor has already covered the concepts of the attacks in the lecture, so we do not include them in the
lab session.

SEED Labs – Return-to-libc Attack Lab 3

3.2 Task 1: Exploiting the Vulnerability

Create the badfile. Your home directory includes an ”exploit.c” program that you can modify in order to
create the badfile.

You need to figure out the values for the addresses in that program, as well as where to store those
addresses. If you incorrectly calculate the locations, your attack might not work.

After you modify the exploit.c program, compile using compile exploit.sh and run it; this will
generate the contents for “badfile”. Run the vulnerable program retlib. If your exploit is implemented
correctly, when the function bof returns, it will return to the system() libc function, and execute system("/bin/sh").
If the vulnerable program is running with the root privilege, you can get the root shell at this point.

It should be noted that the exit() function is not very necessary for this attack; however, without this
function, when system() returns, the program might crash, causing suspicions.

$./compile_exploit.sh
$./exploit // create the badfile
$./retlib // launch the attack by running the vulnerable program
<---- You’ve got a root shell!

Questions. In your report, please answer the following questions:

• Please describe how you decide the values for X, Y and Z. Either show us your reasoning, or if you
use trial-and-error approach, show your trials.

• After your attack is successful, change the file name of retlib to a different name, making sure that
the length of the file names are different. For example, you can change it to newretlib. Repeat the
attack (without changing the content of badfile). Is your attack successful or not? If it does not
succeed, explain why.

3.3 Task 2: Address Randomization

In this task, let us turn on the Ubuntu’s address randomization protection. We run the same attack developed
in Task 1. Can you get a shell? If not, what is the problem? How does the address randomization make your
return-to-libc attack difficult? You should describe your observation and explanation in your lab report. You
can use the following instructions to turn on the address randomization:

sudo sysctl -w kernel.randomize_va_space=2

3.4 Task 3: Stack Guard Protection

In this task, let us turn on the Ubuntu’s Stack Guard protection. Please remember to turn off the address
randomization protection. We run the same attack developed in Task 1. Can you get a shell? If not, what
is the problem? How does the Stack Guard protection make your return-to-libc attack difficult? You should
describe your observation and explanation in your lab report. You can use the following instructions to
compile your program with the Stack Guard protection turned on.

sudo su
gcc -m32 -z noexecstack -o retlib retlib.c
chmod 4755 retlib
exit

SEED Labs – Return-to-libc Attack Lab 4

4 Guidelines: Understanding the function call mechanism

4.1 Find out the addresses of libc functions

To find out the address of any libc function, you can use the following gdb commands (a.out is an
arbitrary program):

$ gdb a.out

(gdb) b main
(gdb) r
(gdb) p system
$1 = {<text variable, no debug info>} 0x9b4550 <system>

(gdb) p exit
$2 = {<text variable, no debug info>} 0x9a9b70 <exit>

From the above gdb commands, we can find out that the address for the system() function is
0x9b4550, and the address for the exit() function is 0x9a9b70. The actual addresses in your sys-
tem might be different from these numbers.

4.2 Putting the shell string in the memory

One of the challenge in this lab is to put the string "/bin/sh" into the memory, and get its address. This
can be achieved using environment variables. When a C program is executed, it inherits all the environment
variables from the shell that executes it. The environment variable SHELL points directly to /bin/bash
and is needed by other programs, so we introduce a new shell variable MYSHELL and make it point to zsh

$ export MYSHELL=/bin/sh

We will use the address of this variable as an argument to system() call. The location of this variable
in the memory can be found out easily using the following program:

void main(){
char* shell = getenv("MYSHELL");
if (shell)

printf("%x\n", (unsigned int)shell);
}

If the address randomization is turned off, you will find out that the same address is printed out. However,
when you run the vulnerabile program retlib, the address of the environment variable might not be
exactly the same as the one that you get by running the above program; such an address can even change
when you change the name of your program (the number of characters in the file name makes difference).
The good news is, the address of the shell will be quite close to what you print out using the above program.
Therefore, you might need to try a few times to succeed.

4.3 Understand the Stack

To know how to conduct the return-to-libc attack, it is essential to understand how the stack works.
We use a small C program to understand the effects of a function invocation on the stack.

SEED Labs – Return-to-libc Attack Lab 5

/* foobar.c */
#include<stdio.h>
void foo(int x)
{

printf("Hello world: %d\n", x);
}

int main()
{

foo(1);
return 0;

}

We can use "gcc -m32 -S foobar.c" to compile this program to the assembly code. The resulting
file foobar.s will look like the following:

......
8 foo:
9 pushl %ebp

10 movl %esp, %ebp
11 subl $8, %esp
12 movl 8(%ebp), %eax
13 movl %eax, 4(%esp)
14 movl $.LC0, (%esp) : string "Hello world: %d\n"
15 call printf
16 leave
17 ret

......
21 main:
22 leal 4(%esp), %ecx
23 andl $-16, %esp
24 pushl -4(%ecx)
25 pushl %ebp
26 movl %esp, %ebp
27 pushl %ecx
28 subl $4, %esp
29 movl $1, (%esp)
30 call foo
31 movl $0, %eax
32 addl $4, %esp
33 popl %ecx
34 popl %ebp
35 leal -4(%ecx), %esp
36 ret

4.4 Calling and Entering foo()

Let us concentrate on the stack while calling foo(). We can ignore the stack before that. Please note that
line numbers instead of instruction addresses are used in this explanation.

SEED Labs – Return-to-libc Attack Lab 6

esp

variables

bfffe764

bfffe760

bfffe75c

bfffe758

Parameters

Return addr

Old ebp

00000001

080483dc

bfffe768

bfffe750

(d) Line 11: subl $8, %esp

esp

ebp

bfffe764

bfffe760

bfffe75c

00000001

080483dcReturn addr

Parameters

esp

(b) Line 30: call foo

bfffe764

bfffe760
00000001Parameters

esp

 Line 29: movl $1, (%esp)

(a) Line 28: subl $4, %esp

bfffe764

bfffe760

bfffe75c

bfffe758

Parameters

Return addr

Old ebp

00000001

080483dc

bfffe768

esp ebp

(c) Line 9: push %ebp

 Line 10: movl %esp, %ebp

(e) Line 16: leave (f) Line 17: ret

bfffe764

bfffe760

bfffe75c

00000001

080483dcReturn addr

Parameters

esp

bfffe764

bfffe760
00000001Parameters

Local

Figure 1: Entering and Leaving foo()

• Line 28-29:: These two statements push the value 1, i.e. the argument to the foo(), into the stack.
This operation increments %esp by four. The stack after these two statements is depicted in Fig-
ure ??(a).

• Line 30: call foo: The statement pushes the address of the next instruction that immediately
follows the call statement into the stack (i.e the return address), and then jumps to the code of
foo(). The current stack is depicted in Figure ??(b).

• Line 9-10: The first line of the function foo() pushes %ebp into the stack, to save the previous
frame pointer. The second line lets %ebp point to the current frame. The current stack is depicted in
Figure ??(c).

• Line 11: subl $8, %esp: The stack pointer is modified to allocate space (8 bytes) for local
variables and the two arguments passed to printf. Since there is no local variable in function foo,
the 8 bytes are for arguments only. See Figure ??(d).

4.5 Leaving foo()

Now the control has passed to the function foo(). Let us see what happens to the stack when the function
returns.

• Line 16: leave: This instruction implicitly performs two instructions (it was a macro in earlier x86
releases, but was made into an instruction later):

mov %ebp, %esp
pop %ebp

SEED Labs – Return-to-libc Attack Lab 7

The first statement release the stack space allocated for the function; the second statement recover the
previous frame pointer. The current stack is depicted in Figure ??(e).

• Line 17: ret: This instruction simply pops the return address out of the stack, and then jump to the
return address. The current stack is depicted in Figure ??(f).

• Line 32: addl $4, %esp: Further resotre the stack by releasing more memories allocated for
foo. As you can clearly see that the stack is now in exactly the same state as it was before entering
the function foo (i.e., before line 28).

References

[1] c0ntext Bypassing non-executable-stack during exploitation using return-to-libc
http://www.infosecwriters.com/text resources/pdf/return-to-libc.pdf

[2] Phrack by Nergal Advanced return-to-libc exploit(s) Phrack 49, Volume 0xb, Issue 0x3a. Available at
http://www.phrack.org/archives/58/p58-0x04

